Optimal Packing Circular Cylinders into a Cylindrical Container Taking into Account Behavior Constraints

P. Stetsyuk1, T. Romanova2, A. Pankratov2, A. Kovalenko2

1 Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kiev, Ukraine
2 Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkov, Ukraine

10th ESICUP Meeting at Lille, France, April 24 – 26, 2013
Content

1. Problem formulation
2. Mathematical model
3. Solution method
4. Computational results
Content

1. Problem formulation
2. Mathematical model
3. Solution method
4. Computational results
Let \(\{C_i, i = 1, 2, \ldots, N\} \) be a set of circular cylinders. Each cylinder \(C_i \) given by its radius \(r_i \), height \(h_i \) and mass \(m_i \). Let \(\Omega \) be a container of cylindrical form of radius \(R \) and height \(2H \).

We denote container \(\Omega \) with the set of cylinders inside the container by \(\Omega^A \).
Problem

Pack the set of cylinders \(\{C_i, i = 1, 2, \ldots, N\} \) into a container \(\Omega \) of minimal radius taking into account mechanical behavior constraints (balance, inertia moments, stability) of system \(\Omega^A \).
These problems have a wide spectrum of applications in space engineering for satellite modeling [Fasano, Pinter (2012)].

The packing problem is considered in the paper

Chao Che, Yi-shou Wang, Hong-fei Teng. Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known. (Online), (2008)

In order to solve the problem authors use a heuristic algorithm.
Content

1 Problem formulation

2 Mathematical model

3 Solution method

4 Computational results
We present a mathematical model of the problem as a constraint optimization problem using phi-function technique

\[F(u^*) = \min_{u \in W \subset \mathbb{R}^{3N+1}} F(u), \] (1)

\[W = \left\{ u \in \mathbb{R}^{3N+1} : \Phi_k(u) \geq 0, k = 1, \ldots, N(N+1)/2, \right. \]
\[\left. G_1(u) \geq 0, G_2(u) \geq 0, G_3(u) \geq 0, \right. \]
\[R \geq r_i, i = 1, \ldots, N, \] (2)

where
\[F(u) = R \] is an objective function,
\[u = (u_1, u_2, \ldots, u_N, R) \] is a vector of variables,
\[u_i = (x_i, y_i, z_i) \] is a vector of placement parameters of cylinder,
\[W \] is a feasible region
The feasible region W is formed by **placement** constraints and **behavior** constraints.

Placement constraints use phi-functions for description of non-overlapping and containment constraints

$$
\Phi_{ij}^{CC} \geq 0, \; i > j = 1, \ldots, N - 1, \quad \Phi_i^{\Omega^*C} \geq 0, \; i = 1, \ldots, N
$$

where Φ_{ij}^{CC} is phi-function for two cylinders C_i and C_j, $\Phi_i^{\Omega^*C}$ is phi-function for cylinder C_i and object $\Omega^* = E^3 \setminus \text{int} \Omega$.
Behavior constraints include:

- balance constraints $G_1(u) \geq 0$,
- inertia moment constraints $G_2(u) \geq 0$,
- stability constraints $G_3(u) \geq 0$.

Let us consider behavior constraints in details.
Center of mass \((x_c, y_c, z_c)\) of the set \(\{C_i, i \in I_N\}\) is defined as:

\[
x_c = \frac{\sum_{i=1}^{N} m_i x_i}{\sum_{i=1}^{N} m_i}, \quad y_c = \frac{\sum_{i=1}^{N} m_i y_i}{\sum_{i=1}^{N} m_i}, \quad z_c = \frac{\sum_{i=1}^{N} m_i z_i}{\sum_{i=1}^{N} m_i}.
\]

\((x_e, y_e, z_e)\) is a center of mass of \(\Omega^A\), which coincide with the symmetry centre of container \(\Omega\). We assume that \((x_e, y_e, z_e) = (0, 0, 0)\).
Balance constraints have the following form:

\[G_1(u) \geq 0, \]

where

\[G_1(u) = \min\{g_1(u), g_2(u), g_3(u)\}, \]
\[g_1(u) = \min\{- (x_e - x_c) + \Delta x_c, (x_e - x_c) + \Delta x_c\}, \]
\[g_2(u) = \min\{- (y_e - y_c) + \Delta y_c, (y_e - y_c) + \Delta y_c\}, \]
\[g_3(u) = \min\{- (z_e - z_c) + \Delta z_c, (z_e - z_c) + \Delta z_c\}, \]

\((\Delta x_c, \Delta y_c, \Delta z_c) - \) allowable deviations from point \((x_e, y_e, z_e)\) of center of mass of \(\Omega^A\).
Mathematical model

Inertia moment constraints

Inertia moments $J_x(u), J_y(u), J_z(u)$ of system Ω^A are defined as

$$J_x(u) = \sum_{i=1}^{N} J''_{xi} + \sum_{i=1}^{N} m_i(y_i^2 + z_i^2) - (y_c^2 + z_c^2) \sum_{i=1}^{N} m_i,$$

$$J_y(u) = \sum_{i=1}^{N} J''_{yi} + \sum_{i=1}^{N} m_i(x_i^2 + z_i^2) - (x_c^2 + z_c^2) \sum_{i=1}^{N} m_i,$$

$$J_z(u) = \sum_{i=1}^{N} J''_{zi} + \sum_{i=1}^{N} m_i(x_i^2 + y_i^2) - (x_c^2 + y_c^2) \sum_{i=1}^{N} m_i.$$

where

$$J''_{xi} = J''_{yi} = \frac{1}{12} m_i(3r_i^2 + 4h_i^2), J''_{zi} = \frac{1}{2} m_i r_i^2.$$
Inertia moment constraints have the following form:

\[G_2(u) \geq 0, \]

where

\[G_2(u) = \min\{g_4(u), g_5(u), g_6(u)\}, \]

\[g_4(u) = \min\{-J_x(u) + \Delta J_x, J_x(u) + \Delta J_x\}, \]

\[g_5(u) = \min\{-J_y(u) + \Delta J_y, J_y(u) + \Delta J_y\}, \]

\[g_6(u) = \min\{-J_z(u) + \Delta J_z, J_z(u) + \Delta J_z\}, \]

\((\Delta J_x, \Delta J_y, \Delta J_z)\) – allowable deviations from inertia moment of \(\Omega^A\)
Angle deviations $\varphi_x(u), \varphi_y(u), \varphi_z(u)$ of the main inertia axis of the system from axis of the fixed coordinate system are defined by the following relations:

$$\varphi_x(u) = \frac{1}{2} \arctg \left(\frac{2J_{xy}(u)}{J_y(u) - J_x(u)} \right), \quad J_{xy}(u) = \sum_{i=1}^{N} m_i x_i y_i - x_c y_c \sum_{i=1}^{N} m_i,$$

$$\varphi_y(u) = \frac{1}{2} \arctg \left(\frac{2J_{yz}(u)}{J_z(u) - J_y(u)} \right), \quad J_{yz}(u) = \sum_{i=1}^{N} m_i y_i z_i - y_c z_c \sum_{i=1}^{N} m_i,$$

$$\varphi_z(u) = \frac{1}{2} \arctg \left(\frac{2J_{xz}(u)}{J_z(u) - J_x(u)} \right), \quad J_{xz}(u) = \sum_{i=1}^{N} m_i x_i y_i - x_c y_c \sum_{i=1}^{N} m_i.$$
Stability constraints have the following form:

\[G_3(u) \geq 0, \]

where

\[G_3(u) = \min\{g_7(u), g_8(u), g_9(u)\}, \]

\[g_7(u) = \min\{-\varphi_x(u) + \Delta \varphi_x, \varphi_x(u) + \Delta \varphi_x\}, \]

\[g_8(u) = \min(-\varphi_y(u) + \Delta \varphi_y, \varphi_y(u) + \Delta \varphi_y), \]

\[g_9(u) = \min(-\varphi_z(u) + \Delta \varphi_z, \varphi_z(u) + \Delta \varphi_z), \]

\(\Delta \varphi_x, \Delta \varphi_y, \Delta \varphi_z\) are allowable errors of angles

\(\varphi_x(u), \varphi_y(u), \varphi_z(u)\)
1 Problem formulation

2 Mathematical model

3 Solution method

4 Computational results
Solution method

Step 1. We generate a new function

\[
f(u) = R + P_1 \sum_{k=1}^{n} \max\{0, -\Phi_k\} + P_2 \sum_{k=n+1}^{n+18} \max\{0, -g_k\} + P_3 \max\{0, -R + \max_{i=1,...,N} r_i\},
\]

by means of non-smooth penalty \(P_1, P_2, P_3, n = N(N+1)/2 \), \(\Phi_k \) are given phi-functions and \(g_k \) are given behavior functions

Step 2. We reduce problem (1)–(2) to the following non-constrained nonsmooth optimization problem

\[
\min_{u \in \mathbb{E}^{3N+1}} f(u).
\]
In order to realize the model (3) we

1) generate a set of random starting points

2) apply Shor’s r-algorithm\(^1\) for each starting point to search for a local minima

Computational results

Content

1. Problem formulation
2. Mathematical model
3. Solution method
4. Computational results
Computational results

Simple test problem

We show our results with help of the simple test problem:

- $N = 5$
- $H = 1$, $h_i = 1$, $i = 1, \ldots, 5$

Cylinders have different radii and masses:

- $r_1 = 0.1$, $r_2 = 0.2$, $r_3 = 0.3$, $r_4 = 0.5$, $r_5 = 0.8$
- $m_1 = 0.0785$, $m_2 = 0.314$, $m_3 = 0.7065$, $m_4 = 1.9625$, $m_5 = 5.024$

System behavior parameters:

- $(x_e, y_e, z_e) = (0, 0, 0)$
- $(\Delta x_c, \Delta y_c, \Delta z_c) = (0.0001, 0.0001, 0.0001)$
- $(\Delta J_x, \Delta J_y, \Delta J_z) = (5, 5, 5)$
Computational results

Optimal placement of cylinders (view from above)

\[F(u^*) = R^* = 1.3000 \] is the global minimum of the problem without behavior constraints

\[F(u_1^*) = R^* = 1.3161 \] is the global minimum of the problem with balance constraints
Computational results

Optimal placement of cylinders (view from above)

\[F(u_2^*) = R^* = 1.3161 \] is the global minimum of the problem with balance constraints.

\[F(u^*) = R^* = 1.3625 \] is the global minimum of the problem with balance and inertia moment constraints.
to test our algorithm for medium and large size problems
Thanks

This research is supported by grant 5710 of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine
Question?

Thank you for your attention
phi-functions for 3D-case

\[
\Phi_{ij}^{CC} = \max\{(x_j - x_i)^2 + (y_j - y_i)^2 - (r_i + r_j)^2, \\
z - (h_i + h_j), -z - (h_i + h_j)\},
\]

\((1) \)

\[
\Phi_{i}^{CC} = \min\{-x_i^2 - y_i^2 + (R - r_i)^2, -z + (H - h_i), \\
z + (H - h_i)\}
\]

\((2) \)

phi-functions for 2D-case \((H = h_i)\)

\[
\Phi_{ij}^{CC} = (x_j - x_i)^2 + (y_j - y_i)^2 - (r_i + r_j)^2,
\]

\((3) \)

\[
\Phi_{i}^{CC} = -x_i^2 - y_i^2 + (R - r_i)^2,
\]

\((4) \)